Saving costs with compressed air

Looking for ways to reduce your compressed air costs? You will find them right here.
energy cost savings graphic

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

Everything you need to know about your pneumatic conveying process

Discover how you can create a more efficient pneumatic conveying process.
3D images of blowers in cement plant
Close

Industry Cement

The right compressed air pressure for cement plants

Compressed air systems are necessary for cement plants. They power critical processes like pneumatic conveying, material handling, equipment actuation, and silo fluidization. When considering these applications, you'll want to use the correct compressed air pressure.

 

This principle applies whether you're using an air compressor or blower. In addition to selecting the right pressure, you'll want the best equipment for your facility. This article explores how to make informed decisions regarding safe, efficient operations.

Understanding cement plant requirements

When planning your compressed air system, you'll need to consider that energy costs make up to 80% of owning and operating such equipment. This is worth keeping in mind as you're matching applications with the right air flow and pressure.

 

Applications

As mentioned in the introduction, cement plants have a wide range of needs. To choose the right equipment, you'll need to determine if the application requires pressure or vacuum.

 

Air volume and pressure

Once you've decided on the type of machine necessary, it's important to calculate the required air volume (flow rate) and pressure to determine the size of your compressed air equipment. If your equipment is too big, you can incur unnecessary operational costs. Every 1 bar of extra working pressure equals 7% excess energy consumption.

compressed air cement plant

Types of blowers

The tradtional solution: Lobe (Roots) Blowers

Lobe blowers, also known as Roots blowers, have been around since the mid-19th century. Their principle of operation includes isochoric compression. With these machines, air enters the compression chamber and the volume remains constant as identical rotors rotate.

However, there's a catch. External compression leads to low efficiency and high noise levels. These limitations confine lobe technology to low-pressure applications.

 

The game changer: screw blowers

The screw blower is a modern alternative to the Roots blower. It uses Isentropic compression, which features opposing male and female rotors in its compression element. With this, the screw elements of this blower maintain a fixed, built-in pressure ratio. This eliminates mechanical forces that cause imbalance. Therefore, a screw blower can work at high shaft speeds, resulting in a large flow rate with compact dimensions.

 

Example of energy savings with an Atlas Copco screw blower

For the same pressure, our screw blower consumes significantly less power than our lobe blower. With this, let's consider an ambient temperature of 35°C.

  • Roots blower: consumes 61 kW with an air outlet temperature of 125°C.

  • Screw blower: consumes 43 kW with an air outlet temperature of 94°C. That’s 30% less energy.

In addition, screw blowers fine-tune internal airflow paths. This minimizes pressure drops and turbulence for optimized airflow.

Compressed air pressure safety considerations

Pressure limits

To achieve the right pressure, it's important to pay attention to maximum pressure ratings for compressor parts. You'll want to ensure pipes, hoses, and fittings match the compressor's rating.

 

Regular inspections

Throughout your operations, it's recommended to conduct routine safety checks. This includes hoses, connectors, and seals. If these aren't properly installed, you can encounter pressure drops and wasted energy. Compressor leaks are commonly overlooked.

 

Gauge & valve checks

The best way to evaluate such issues is by checking gauges and valves. If you notice a change in pressure, this can indicate an underlying issue. Additionally, the valves can be damaged, worn, or clogged. All of these pose performance and safety concerns.

 

Location and ventilation

Compressed air equipment should be placed in clean, dry areas. Additionally, you'll want them in the coldest part of your building. This is where there's the least amount of sunlight. As you can imagine, these machines generate a lot of heat.

 

Training and awareness

Your staff should be trained on safe handling. Educate them about risks and preventative measures. They should also know what to spot regarding routine maintenance.

 

Avoiding safety incidents

In addition to energy loss, improperly sized blowers can result in a rupture on a pneumatic conveying line, caused by clogging. This is a potential safety hazard for your workers.

Conclusion

Selecting the right compressors and blowers isn't just about performance. It's also about safety, sustainability, and cost savings. By understanding your plant's needs, evaluating options, and prioritizing safety measures, cement plants can optimize operations. It's important to choose the most efficient equipment for both your bottom line and the environment.